Solution: Statistics and Probability EXAM: MCA SEM - II (CBCGS) DEC - 2016
QP:751002

		i) Find the marginal density functions of X and Y. Marginal density function of X $\begin{aligned} F x(x) & =2 x \quad 0<x<1 \\ & =0 \text { otherwise } \end{aligned}$ Marginal density function of Y $\begin{aligned} \mathrm{Fy}(\mathrm{y}) & =2(1-\mathrm{y}) \quad 0<y<x \\ & =0 \text { otherwise } \end{aligned}$ ii) Find conditional density function of Y given X and X given Y. The conditional density function of Y given X is $1 / x$ The conditional density function of X given Y is $1 /(1-y)$ iii) Check for independence of X and Y. X and Y are not independent
	b)	Calculate the Bowley's coefficient of skewness $\begin{aligned} & \mathrm{N}=83 \quad \mathrm{~N} / 4=83 / 4=20.7 \quad 3 \mathrm{~N} / 4=(3 * 83) / 4=62.25 \quad \\ & \mathrm{Q} 1=16.48 \quad \mathrm{Q}=22.16 \quad \mathrm{Q} 3=27.95 \\ & \text { Bowley's coefficient }=\left(\mathrm{Q} 3+\mathrm{Q} 1-\mathbf{2}^{*} \text { median }\right) /(\mathrm{Q} 3-\mathrm{Q} 1)=0.0096 \end{aligned}$
	c)	i) What is the best test score? Ans: 100 ii) How many students took the test? Ans: $\mathbf{3 0}$ iii) How many students scored 90? Ans: 2 iv) What is the lowest score? Ans: 61 v) Find the difference between the high and low scores. Ans: $\mathbf{3 9}$
Q. 3	a)	
	b)	$\begin{aligned} & E(x)=0.9583 \\ & E\left(x^{2}\right)=1.7916 \\ & E(y)=0.875 \end{aligned}$
	c)	Total letters in the word 'failure' are 7 Letters can be arranged in 7! Ways

		Let A be the event that consonants may occupy only odd position. There are 3 consonants in the word failure and 4 odd positions $\begin{aligned} & n(A)=4 * 3 * 2 * 4!=576 \\ & P(A)=576 / 7!=0.1142 \end{aligned}$
Q. 4	a)	Bayes Theorem : Theory Let E1, E2, \& E3 denote the events that a bolt selected at random is manufactured by machines A, B \& C respectively. Let E denote the event that the bolt is defective. $\mathrm{P}(\mathrm{E} 1)=0.25, \mathrm{P}(\mathrm{E} 1)=0.35, \mathrm{P}(\mathrm{E} 1)=0.40$ The Probability that the bolt is defective, given that it is manufactured by A is $\mathrm{P}(\mathrm{E} \mid \mathrm{E} 1)=0.05$ The Probability that the bolt is defective, given that it is manufactured by B is $\mathrm{P}(\mathrm{E} \mid \mathrm{E} 2)=0.04$ The Probability that the bolt is defective, given that it is manufactured by C is $P(E \mid E 3)=0.02$ By using Baye's Theorem, Probability that randomly selected defective bolt is manufactured by machine A is $P(E 1 \mid E)=\frac{P(E 1) P(E \mid E 1)}{\sum_{i=1}^{3} P(E i) P(E \mid E i)}=\frac{0.25 * 0.05}{0.035}=\frac{0.00125}{0.035}=0.363 \text { OR } \frac{25}{69}$ Probability that randomly selected defective bolt is manufactured by machine B is $P(E 2 \mid E)=\frac{P(E 2) P(E \mid E 2)}{\sum_{i=1}^{3} P(E i) P(E \mid E i)}=\frac{0.35 * 0.05}{0.035}=\frac{0.0014}{0.035}=0.406 \quad \text { OR } \frac{28}{69}$ Probability that randomly selected defective bolt is manufactured by machine C is $P(E 3 \mid E)=\frac{P(E 3) P(E \mid E 3)}{\sum_{i=1}^{3} P(E i) P(E \mid E i)}=\frac{0.40 * 0.02}{0.035}=\frac{0.00140}{0.035}=0.2330 \text { OR } \frac{16}{69}$
	b)	$(A B)=128 \quad(\alpha B)=384 \quad(A \beta)=24 \quad(\alpha \beta)=72$ A α Total B 128 384 512 β 24 72 96 Total 152 456 608$(A) *(B) / N=(152 * 512) / 608=128$ Since (A) $*(B) / N=(A B)$ Hence A and B are independent

	c)	Total fre Expected	quency of 10 digits frequency $=10000$	$\begin{aligned} & s 10,000 \\ & 10=1000 \\ & \hline \end{aligned}$		
		Digits	Observed Freq(0)	Expected Freq (E)	$(\mathrm{O}-\mathrm{E})^{2}$	(O-E) ${ }^{2} / \mathrm{E}$
		0	1026	1000	676	0.676
		1	1107	1000	11449	11.449
		2	997	1000	9	0.009
		3	966	1000	1156	1.156
		4	1075	1000	5625	5.625
		5	933	1000	4489	4.489
		6	1107	1000	11449	11.449
		7	972	1000	784	0.784
		8	964	1000	1296	1.296
		9	853	1000	21609	21.609
						$\Sigma=58.542$
		Since cal The digit	$\begin{aligned} \chi & =\Sigma\left((O-E)^{2} / E\right) \\ & =58.542 \end{aligned}$ culated value is gre 0,1,2,...,9 are not	ter than tabulated niformly distribut	e(16.92)	
Q. 5	a)	$\mathrm{n}=10$	ean $x=764.7$	an $y=2.85$		
		i) Regres Regress Bxy $=25$ Regre Regress Karl Pe ii) Karl iii) iv)	byx $=0.00358$ ssion Equation sion equation of Y 51.9587 ssion Equation sion equation of X earson's Correla Pearson's correl Delivery time in $\begin{aligned} & (y-2.85)=0.00 \\ & (y-2.85)=0.00 \\ & y=3.6923 \text { days } \end{aligned}$ Distance in miles	Y on X is $Y-$ on X is $(y-2.85)$ of X on $Y \quad X-\bar{x}$ on Y is $(X-764.7)$ ion coefficient tion coefficient r days for 1000 mile 58 (x - 764.7) 358 (1000-764.7) for 2.5 days	byx 00358 bxy 251.95 $\pm \sqrt{\text { by }}$ 9494	$\bar{x})$ 4.7) \bar{y}) 2.85) bxy

$$
0^{\left(a^{5}\right)^{5}}
$$

