Solution: Statistics and Probability EXAM: MCA SEM – II (CBCGS) DEC – 2016 QP:751002

Q.1	a)	n=100 mean = 40 SD = 10							
Q.1	α,	$\sum xi = 4000$							
		$\sigma = \sqrt{\sum xi^2 / n} - (\sum xi / n)^2 \qquad \sum xi^2 = 170000$							
		corrected data : $\sum xi = 4000 - (30+12) + (3+27) = 3928$							
		$\sum xi^2 = 164654$							
		corrected mean = 39.28 corrected SD = 10.18							
	b)	Let missing frequencies be f1 and f2							
		Expenditure (in Rs.)	No. of Families	c.f					
		0-20	14	14					
		20-40	f1	14+f1					
		40-60	27	41+f1					
		60-80	f2	41+f1+f2					
		80-100	15 56+f1+f2	56+f1+f2					
		Total number of families – 100	50+11+12						
		Total number of families = 100	(4)						
		56+f1+f2 = 100 $f1+f2 = 44$							
		Median = 50 median class = 40-6	50 t=27 ct = 14+t	1					
		Median = $11 + (12-11)/f * (N/2-cf)$							
		F1-f2 = 1(2)							
		f1 = 22.5							
		f2 = 21.5							
	c)	n(s) = 36							
		let A be the event that the numbe	r selected is divisib	le by 3					
		n(A) = 12 $P(A) = 12/3$	36 = 1/3						
1		Let B be the events that the number selected is perfect square							
		n(B) = 6 $P(B) = 6/36 = 1/6$							
		$n(A\Pi B) = 2$ $P(A \Pi B) = 2/36 = 1/18$							
		P(A B) = 2 $P(A B) = 2/36 = 1/18P(A B) = 4/9$							
	d)	Expectation theorem							
	u)								
0.2		If V and V are two readers wertable		:					
Q.2	a)	If X and Y are two random variable		ity function					
		F(x,y) = 2; $0 < x < 1$, $0 < y < x$							
		= 0 ; otherwise							

		i) Find the marginal density functions of X and Y.
		Marginal density function of X
		$Fx(x) = 2x \ 0 < x < 1$
		= 0 otherwise
		Marginal density function of Y
		Fy(y) = 2(1-y) $0 < y < x$
		= 0 otherwise
		ii) Find conditional density function of Y given X and X given Y.
		The conditional density function of Y given X is 1/x
		The conditional density function of X given Y is 1/(1-y)
		iii) Check for independence of X and Y.
		X and Y are not independent
	b)	Calculate the Bowley's coefficient of skewness
		N = 83 N/4 = $83/4 = 20.7$ 3N/4 = $(3*83)/4 = 62.25$
		Q1 = 16.48 Q2 = 22.16 Q3 = 27.95
		Bowley's coefficient = (Q3 +Q1 – 2*median)/(Q3-Q1)=0.0096
	c)	i) What is the best test score? Ans: 100
		ii) How many students took the test? Ans: 30
		iii) How many students scored 90? Ans: 2
		 iv) What is the lowest score? Ans: 61 v) Find the difference between the high and low scores. Ans: 20
		v) Find the difference between the high and low scores. Ans: 39
	1 1	
0.2	21	Bank correlation coefficient
Q.3	a)	Rank correlation coefficient
Q.3	a)	Judge 1 -> R1 Judge 2 -> R2 Judge 3 -> R3
Q.3	a)	Judge 1 -> R1Judge 2 -> R2Judge 3 -> R3 $\Sigma d12^2 = 74$ $\Sigma d13^2 = 156$ $\Sigma d23^2 = 44$
Q.3	a)	Judge 1 -> R1Judge 2 -> R2Judge 3 -> R3 $\sum d12^2 = 74$ $\sum d13^2 = 156$ $\sum d23^2 = 44$ $\rho 12 = 0.5515$ $\rho 12 = 1000000000000000000000000000000000$
Q.3	a)	Judge 1 -> R1Judge 2 -> R2Judge 3 -> R3 $\sum d12^2 = 74$ $\sum d13^2 = 156$ $\sum d23^2 = 44$ $\rho12 = 0.5515$ $\rho13 = 0.0545$
Q.3	a)	Judge 1 -> R1Judge 2 -> R2Judge 3 -> R3 $\Sigma d12^2 = 74$ $\Sigma d13^2 = 156$ $\Sigma d23^2 = 44$ $\rho 12 = 0.5515$ $\rho 13 = 0.0545$ $\rho 23 = 0.7333$
Q.3		Judge 1 -> R1 Judge 2 -> R2 Judge 3 -> R3 $\Sigma d12^2 = 74$ $\Sigma d13^2 = 156$ $\Sigma d23^2 = 44$ $\rho 12 = 0.5515$ $\rho 13 = 0.0545$ $\rho 23 = 0.7333$ judge 2 and 3 has the nearest approach to beauty
Q.3	a) b)	Judge 1 -> R1Judge 2 -> R2Judge 3 -> R3 $\Sigma d12^2 = 74$ $\Sigma d13^2 = 156$ $\Sigma d23^2 = 44$ $p12 = 0.5515$ $p13 = 0.0545$ $p23 = 0.7333$ judge 2 and 3 has the nearest approach to beauty $E(x) = 0.9583$
Q.3		Judge 1 -> R1Judge 2 -> R2Judge 3 -> R3 $\Sigma d12^2 = 74$ $\Sigma d13^2 = 156$ $\Sigma d23^2 = 44$ $p12 = 0.5515$ $p13 = 0.0545$ $p23 = 0.7333$ judge 2 and 3 has the nearest approach to beauty $E(x) = 0.9583$ $E(x^2) = 1.7916$
Q.3		Judge 1 -> R1Judge 2 -> R2Judge 3 -> R3 $\Sigma d12^2 = 74$ $\Sigma d13^2 = 156$ $\Sigma d23^2 = 44$ $p12 = 0.5515$ $p13 = 0.0545$ $p23 = 0.7333$ judge 2 and 3 has the nearest approach to beauty $E(x) = 0.9583$
Q.3		Judge 1 -> R1Judge 2 -> R2Judge 3 -> R3 $\Sigma d12^2 = 74$ $\Sigma d13^2 = 156$ $\Sigma d23^2 = 44$ $p12 = 0.5515$ $p13 = 0.0545$ $p23 = 0.7333$ judge 2 and 3 has the nearest approach to beauty $E(x) = 0.9583$ $E(x^2) = 1.7916$

		Let A be the event that consonants may occupy only odd position.						
		There are 3 consonants in the word failure and 4 odd positions						
		n(A) = 4*3 *2 *4! = 576						
		P(A) = 576/7! = 0.1142						
Q.4	a)	Bayes Theorem : Theory						
		Let E1, E2, & E3 denote the events that a bolt selected at random is						
		manufactured by machines A, B & C respectively.						
		Let E denote the event that the bolt is defective.						
		P(E1) = 0.25, P(E1) = 0.35, P(E1) = 0.40						
		The Probability that the bolt is defective, given that it is manufactured by A is						
		P(E E1) = 0.05						
		The Probability that the bolt is defective, given that it is manufactured by B is						
		P(E E2) = 0.04 The Probability that the bolt is defective, given that it is manufactured by C is						
		P(E E3) = 0.02						
		By using Baye's Theorem,						
		Probability that randomly selected defective bolt is manufactured by						
		machine A is						
		$P(E1 E) = \frac{P(E1)P(E E1)}{\sum_{i=1}^{3} P(Ei)P(E Ei)} = \frac{0.25 * 0.05}{0.035} = \frac{0.00125}{0.035} = 0.363 \ OR \frac{25}{69}$						
		$P(E1 E) = \frac{1}{\sum_{i=1}^{3} P(Ei)P(E Ei)} = \frac{1}{0.035} = \frac{1}{0.035} = 0.363 \text{ OK} \frac{1}{69}$						
		Probability that randomly selected defective bolt is manufactured by						
		machine B is						
		$P(E2 E) = \frac{P(E2)P(E E2)}{\sum_{i=1}^{3} P(Ei)P(E Ei)} = \frac{0.35 * 0.05}{0.035} = \frac{0.0014}{0.035} = 0.406 OR \frac{28}{69}$						
		Probability that randomly selected defective bolt is manufactured by						
		machine C is $P(E3)P(E E3) = 0.40 * 0.02 = 0.00140$ 16						
		$P(E3 E) = \frac{P(E3)P(E E3)}{\sum_{i=1}^{3} P(Ei)P(E Ei)} = \frac{0.40 * 0.02}{0.035} = \frac{0.00140}{0.035} = 0.2330 \text{ OR } \frac{16}{69}$						
	b)	$(AB) = 128 \ (\alpha B) = 384 \ (A\beta) = 24 \ (\alpha \beta) = 72$						
		A α Total						
		B 128 384 512						
		β 24 72 96						
		Total 152 456 608						
		(A) * (B) / N = $(152 * 512)/608 = 128$						
		Since (A) * (B) / N = (AB)						
		Hence A and B are independent						

		Total frequency of 10 digits is 10,000 Expected frequency = 10000/10 = 1000					
		Digits	Observed Freq(O)		(O- E) ²	(O-E) ² /E	
		0	1026	1000	676	0.676	
		1	1107	1000	11449	11.449	
		2	997	1000	9	0.009	
		3	966	1000	1156	1.156	
		4	1075	1000	5625	5.625	
		5	933	1000	4489	4.489	
		6	1107	1000	11449	11.449	
		7	972	1000	784	0.784	
		8	964	1000	1296	1.296	
		9	853	1000	21609	21.609	
						∑ =58.542	
			-	ater than tabulated va uniformly distributed	lue(16.92).		
			= 58.542 Iculated value is grea		lue(16.92).		
Q.5	a)	The digi	= 58.542 Iculated value is grea	uniformly distributed	lue(16.92).		
Q.5	a)	The digi n=10 i)	 = 58.542 lculated value is greated to be a series of the ser	nean y = 2.85			
Q.5	a)	The digi n=10 i) Regre	 = 58.542 Iculated value is greated to be a series of the ser	uniformly distributed nean y = 2.85 of Y on X is $Y - \bar{y}$	v = byx (X)		
Q.5	a)	The digi n=10 i) Regre Regres	 = 58.542 Iculated value is greated to be a series of the series of t	nean y = 2.85	v = byx (X)		
Q.5	a)	The digi n=10 i) Regree Regres Bxy = 2	 = 58.542 Iculated value is greated to be a series of the ser	nean y = 2.85 of Y on X is $Y - \bar{y}$ on X is (y – 2.85) =	<i>v</i> = <i>byx</i> (<i>X</i> 0.00358(x-	764.7)	
Q.5	a)	The digi n=10 i) Regree Regres Bxy = 2 Regree	 = 58.542 Iculated value is greated to be a seried to be a serie	uniformly distributed nean y = 2.85 of Y on X is $Y - \bar{y}$ on X is (y - 2.85) = of X on Y X - \bar{x}	v = byx (X 0.00358(x- = bxy (Y	764.7) - ȳ)	
Q.5	a)	The digi n=10 i) Regree Bxy = 2 Regree Regree	 = 58.542 Iculated value is greated to be a seried to be a serie	uniformly distributed nean y = 2.85 of Y on X is $Y - \overline{y}$ on X is $(y - 2.85) =$ of X on Y X - \overline{x} on Y is $(X - 764.7)$	<i>v</i> = <i>byx</i> (<i>X</i> 0.00358(x- = <i>bxy</i> (<i>Y</i> = 251.9587(764.7) - y) (y-2.85)	
Q.5	a)	The digi n=10 i) Regree Bxy = 2 Regree Regree	 = 58.542 Iculated value is greated to be a seried to be a serie	uniformly distributed nean y = 2.85 of Y on X is $Y - \bar{y}$ on X is (y - 2.85) = of X on Y X - \bar{x}	<i>v</i> = <i>byx</i> (<i>X</i> 0.00358(x- = <i>bxy</i> (<i>Y</i> = 251.9587(764.7) - y) (y-2.85)	
Q.5	a)	The digi n=10 i) Regres Bxy = 2 Regres Regres Karl P	 = 58.542 Iculated value is greated to a strain of the second strain of the	uniformly distributed nean y = 2.85 of Y on X is $Y - \overline{y}$ on X is $(y - 2.85) =$ of X on Y X - \overline{x} on Y is $(X - 764.7)$	b = byx (X) 0.00358(x-1) = bxy (Y) = 251.9587(x-1) $= \pm \sqrt{byx}$	764.7) - y) (y-2.85)	
Q.5	a)	The digi n=10 i) Regres Bxy = 2 Regres Regres Karl P	 = 58.542 Iculated value is greated to a strain of the second strain of the second strain of the second strain of the second strain equation of the second strain equation of the second strain of the sec	uniformly distributed nean y = 2.85 of Y on X is $Y - \bar{y}$ on X is (y - 2.85) = of X on Y X - \bar{x} on Y is (X - 764.7) tion coefficient r	b = byx (X) 0.00358(x-1) = bxy (Y) = 251.9587(0) $= \pm \sqrt{byx}$ 0.9494	764.7) - y) (y-2.85)	
Q.5	a)	The digi n=10 i) Regree Bxy = 2 Regree Regres Karl P ii) Kar	 = 58.542 Iculated value is greated to a strain of the second strain of the second strain of the second strain of the second strain equation of the second strain equation of the second strain of the sec	uniformly distributed nean y = 2.85 of Y on X is $Y - \bar{y}$ on X is (y - 2.85) = of X on Y X - \bar{x} on Y is (X - 764.7) tion coefficient r ation coefficient r = days for 1000 miles	b = byx (X) 0.00358(x-1) = bxy (Y) = 251.9587(0) $= \pm \sqrt{byx}$ 0.9494	764.7) - y) (y-2.85)	
Q.5	a)	The digi n=10 i) Regree Bxy = 2 Regree Regres Karl P ii) Kar	 = 58.542 Iculated value is greated to a strain of the second strain of the	uniformly distributed nean y = 2.85 of Y on X is $Y - \bar{y}$ on X is (y - 2.85) = of X on Y X - \bar{x} on Y is (X - 764.7) tion coefficient r ation coefficient r = days for 1000 miles	b = byx (X) 0.00358(x-1) = bxy (Y) = 251.9587(0) $= \pm \sqrt{byx}$ 0.9494	764.7) - y) (y-2.85)	
Q.5	a)	The digi n=10 i) Regree Bxy = 2 Regree Regres Karl P ii) Kar	 = 58.542 Iculated value is greated to a strain of the second strain of the	uniformly distributed nean y = 2.85 of Y on X is $Y - \bar{y}$ on X is $(y - 2.85) =$ of X on Y X - \bar{x} on Y is $(X - 764.7)$ tion coefficient r ation coefficient r = days for 1000 miles 358 (x - 764.7)	b = byx (X) 0.00358(x-1) = bxy (Y) = 251.9587(0) $= \pm \sqrt{byx}$ 0.9494	764.7) - y) (y-2.85)	

									
		(x – 764.7) = 251.9587 (y – 2.85)							
		(x – 764.7) = 251.9587 (2.5 – 2.85)							
		X = 676.5144 miles							
	b)	N =150 N/4 = 150/4 = 37.5 3N/4 = 112.5							
		Q1 = 31.75							
		Q3 = 62.625							
		Quartile deviation = $(Q3 - Q1)/2 = 15.4375$							
	c)	$P(P) = 0.8$ $P(W) = 0.7$ $P(P \Pi W) = 0.65$							
		i) $P(PUW) = 0.85$							
		ii) P(PUW) = P(PUW)' (Demorgan's law)							
		= 0.15							
		iii) P(PПW') = 0.15							
Q.6	a)	Box and Whisker diagram							
		Given observations in ascending order 1,3,3,6,6,7,7,10							
		Median =Q2=6							
		Median of lower quartile = 3							
		Median of upper quartile = 7							
		1 is smallest value and 10 is greatest value							
		By using this draw required diagram							
	b)	N = 1000 (A) =600 (B) = 500 (AB)= 50							
		A α Total							
		B 50 450 500							
		β 550 -50 500							
		Total 600 400 1000							
	Since $(\alpha\beta)$ = -50 the given data is inconsistent.								
	c)	Given n=10, sample mean \bar{x} =0.024, sample standard deviation s=0.002							
		Null Hypothesis. H_0 : μ =0.025cm, (i.e. there is no significant difference							
		between sample mean $\bar{x} = 0.024$ population mean: $\mu = 0.025$)							
		Alternative Hypothesis. H ₁ : $\mu \neq 0.025$ cm							
		Under H ₀ the test statistic is $t = \frac{\bar{x}-\mu}{s/\sqrt{n-1}} = -1.5 \text{ or } (1.5 \text{ if } \sqrt{n-1} = -3)$							
		Tabulated t for 9 d.f at 5% LOS is 2.262, t =1.5<2.262							
		calculated value of $t < tabulted value of t : H_0$ is accepted There is no significant deviation							
		There is no significant deviation.							
	d)	Value of $K = 3/10$							
	~, _	Median = $(6 - \sqrt{6})/3$ since median lies between 0 and 2							
L	1								

